Mini-ats102.ru

ООО “Мультилайн”
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Быстрое (базовое) знакомство с устройством компьютера

Быстрое (базовое) знакомство с устройством компьютера

Компьютер. Как много в этом слове! Из чего же состоит компьютер? Какие устройства образуют компьютер? Какие функции выполняют основные устройства компьютера?
Основные устройства компьютера
На все эти вопросы мы с вами постараемся ответить в данной заметке. Заметка будет банальной для большинства читателей, но все же эта информация должна присутствовать на проекте pc-assitent.ru

Учитель информатики

Информатика. 7 класса. Босова Л.Л. Оглавление

  • компьютер
  • процессор
  • память
  • устройства ввода информации
  • устройства вывода информации

2.1.1. Компьютер

Одним из важных объектов, изучаемых на уроках информатики, является компьютер, получивший своё название по основной функции — проведению вычислений (англ, computer — вычислитель).

Первый компьютер был создан в 1945 г. в США. Познакомиться с историей компьютеров вы можете, совершив виртуальное путешествие по музеям вычислительной техники. Так, много интересной информации о компьютерах можно узнать, посетив Виртуальный музей информатики (informat444. narod.ru). Обратите внимание, что для обозначения компьютерной техники 1940-1970-х годов часто используется аббревиатура ЭВМ (электронная вычислительная машина).

Современный компьютер — универсальное электронное программно управляемое устройство для работы с информацией.

Универсальным устройством компьютер называется потому, что он может применяться для многих целей — обрабатывать, хранить и передавать самую разнообразную информацию, использоваться человеком в разных видах деятельности.

Современные компьютеры могут обрабатывать разные виды информации: числа, текст, изображения, звуки. Информация любого вида представляется в компьютере в виде двоичного кода — последовательностей нулей и единиц. Некоторые способы двоичного кодирования представлены на рис. 2.1.

Информацию, предназначенную для обработки на компьютере и представленную в виде двоичного кода, принято называть двоичными данными или просто данными. Одним из основных достоинств двоичных данных является то, что их копируют, хранят и передают с использованием одних и тех же универсальных методов, независимо от вида исходной информации.

Способы двоичного кодирования текстов, звуков (голоса, музыки), изображений (фотографий, иллюстраций), последовательностей изображений (кино и видео), а также трёхмерных объектов были придуманы в 80-х годах прошлого века. Позже мы рассмотрим способы двоичного кодирования числовой, текстовой, графической и звуковой информации более подробно. Теперь же главное — знать, что последовательностям 1 и 0 в компьютерном представлении соответствуют электрические сигналы — «включено» и «выключено». Компьютер называется электронным устройством, потому что он состоит из множества электронных компонентов, обрабатывающих эти сигналы.

Обработку данных компьютер проводит в соответствии с программой — последовательностью команд, которые необходимо выполнить над данными для решения поставленной задачи. Как и данные, программы представляются в компьютере в виде двоичного кода. Программно управляемым устройством компьютер называется потому, что его работа осуществляется под управлением установленных на нём программ. Это программный принцип работы компьютера.

Современные компьютеры бывают самыми разными: от мощных компьютерных систем, занимающих целые залы и обеспечивающих одновременную работу многих пользователей, до мини-компьютеров, помещающихся на ладони (рис. 2.2).

Сегодня самым распространённым видом компьютеров является персональный компьютер (ПК) — компьютер, предназначенный для работы одного человека.

2.1.2. Устройства компьютера и их функции

Любой компьютер состоит из процессора, памяти, устройств ввода и вывода информации. Функции, выполняемые этими устройствами, в некотором смысле подобны функциям мыслящего человека (рис. 2.3). Но даже столь очевидное сходство не позволяет нам отождествлять человека с машиной хотя бы потому, что человек управляет своими действиями сам, а работа компьютера подчинена заложенной в него программе.

Процессор компьютера

Центральным устройством компьютера является процессор. Он организует приём данных, считывание из оперативной памяти очередной команды, её анализ и выполнение, а также отправку результатов работы на требуемое устройство. Основными характеристиками процессора являются его тактовая частота и разрядность.

Процессор обрабатывает поступающие к нему электрические сигналы (импульсы). Промежуток времени между двумя последовательными электрическими импульсами называется тактом. На выполнение процессором каждой операции выделяется определённое количество тактов.

Тактовая частота процессора равна количеству тактов обработки данных, которые процессор производит за 1 секунду. Тактовая частота измеряется в мегагерцах (МГц) — миллионах тактов в секунду. Чем больше тактовая частота, тем быстрее работает компьютер. Тактовая частота современных процессоров уже превышает 1000 МГц = 1 ГГц (гигагерц).

Разрядность процессора — это максимальная длина двоичного кода, который может обрабатываться или передаваться одновременно. Разрядность процессоров современных компьютеров достигает 64.

Память компьютера

Память компьютера предназначена для записи (приёма), хранения и выдачи данных. Представим её в виде листа в клетку. Тогда каждая клетка этого листа будет изображать бит памяти — наименьший элемент памяти компьютера. В каждой такой «клетке» может храниться одно из двух значений: 0 или 1. Один символ двухсимвольного алфавита, как известно, несёт один бит информации. Таким образом, в одном бите памяти содержится один бит информации.

Читайте так же:
Можно ли заходить в инстаграм с компьютера

Различают внутреннюю и внешнюю память.

Внутренняя память компьютера

Внутренней называется память, встроенная в компьютер и непосредственно управляемая процессором. Во внутренней памяти хранятся исполняемые в данный момент программы и оперативно необходимые для этого данные. Внутренняя память компьютера позволяет передавать процессору и принимать от него данные примерно с такой же скоростью, с какой процессор их обрабатывает. Поэтому внутренняя память иначе называется оперативной (быстрой). Объём оперативной памяти современных компьютеров измеряется в гигабайтах.

Электрические импульсы, в форме которых информация сохраняется в оперативной памяти, существуют только тогда, когда компьютер включён. После выключения компьютера вся информация, содержащаяся в оперативной памяти, теряется.

К внутренней памяти компьютера относится также ПЗУ — постоянное запоминающее устройтво. В нём хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. После выключения компьютера информация в ПЗУ сохраняется.

Внешняя память компьютера

Для долговременного хранения программ и данных предназначена внешняя (долговременная) память. Внешняя память позволяет сохранять огромные объёмы информации. Информация во внешней памяти после выключения компьютера сохраняется. Различают носители информации — магнитные и оптические диски, энергонезависимые электронные диски (карты флеш-памяти и флеш-диски) и накопители (дисководы) — устройства, обеспечивающие запись данных на носители и считывание данных с носителей. Жёсткий диск — устройство, совмещающее в себе накопитель (дисковод) и носитель (непосредственно диск).

При запуске пользователем некоторой программы, хранящейся во внешней памяти, она загружается в оперативную память и после этого начинает выполняться.

На сайте http://sc.edu.ru размещён анимационный ролик «Внутренняя память ЭВМ: оперативная память» (135117), иллюстрирующий информационный обмен между внешней и внутренней памятью.

Устройства ввода и вывода информации

Приложив значительные усилия, человек может представить текстовую, графическую, звуковую информацию в двоичном коде. Значительно труднее человеку понять двоичный код. И совсем уже невозможно человеку понять информацию, представленную последовательностью электрических импульсов. Входящие в состав компьютера устройства ввода «переводят» информацию с языка человека на язык компьютера; устройства вывода «переводят» электрические импульсы в форму, доступную для человеческого восприятия. Примеры устройств ввода: клавиатура, мышь, микрофон. Примеры устройств вывода: монитор, принтер.

Различные устройства компьютера связаны между собой каналами передачи информации (рис. 2.4).

Самое главное

Современный компьютер — универсальное электронное программно управляемое устройство для работы с информацией.

Любой компьютер состоит из процессора, памяти, устройств ввода и вывода информации. Функции, выполняемые этими устройствами, в некотором смысле подобны функциям мыслящего человека.

Вопросы

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Какими слайдами вы могли бы дополнить презентацию.

  • Большая советская энциклопедия. 3-е изд. 1969—1978 гг.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Внешнее запоминающее устройство» в других словарях:

внешнее запоминающее устройство — внешнее запоминающее устройство; внешняя память; отрасл. внешний накопитель Запоминающее устройство, предназначенное для длительного хранения массивов информации и обмена ими … Политехнический терминологический толковый словарь

Внешнее Запоминающее Устройство — ВЗУ Внешнее устройство памяти. Скорость работы устройства ВЗУ ниже скорости работы процессоров, поэтому эти устройства с ними непосредственно не взаимодействуют. ВЗУ осуществляют пересылку данных быстродействующим Оперативным Запоминающим… … Справочник технического переводчика

внешнее запоминающее устройство — ВЗУ Запоминающее устройство, подключаемое к центральной части вычислительной системы и предназначенное для хранения большого объема данных. [ГОСТ 25492 82] [ГОСТ 25868 91] Тематики оборуд. перифер. систем обраб. информацииустройства цифр. выч.… … Справочник технического переводчика

Внешнее запоминающее устройство — 8. Внешнее запоминающее устройство ВЗУ External storage Запоминающее устройство, подключаемое к центральной части вычислительной системы и предназначенное для хранения большого объема данных Источник: ГОСТ 25492 82: Устройства цифровых… … Словарь-справочник терминов нормативно-технической документации

внешнее запоминающее устройство — išorinė atmintinė statusas T sritis automatika atitikmenys: angl. external memory; external storage; peripheral memory; peripheral storage vok. externer Speicher, m; Externspeicher, m; peripherer Speicher, m; Peripheriespeicher, m; äußerer… … Automatikos terminų žodynas

внешнее запоминающее устройство — išorinė atmintinė statusas T sritis fizika atitikmenys: angl. external memory vok. äußere Speichereinrichtung, f rus. внешнее запоминающее устройство, n pranc. mémoire extérieure, f; mémoire périphérique, f … Fizikos terminų žodynas

ВНЕШНЕЕ ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО — запоминающее устройство (ЗУ), предназнач. для длит. хранения очень больших массивов информации в ЭВМ и вычислит. системах. В качестве внешних используют ЗУ на магн. лентах, магн. и оптич. дисках, дискетах (магн. дисках в неразборной кассете),… … Большой энциклопедический политехнический словарь

Читайте так же:
Лучший ноутбук по соотношению цена качество

Внешнее запоминающее устройство — запоминающее устройство, предназначенное для хранения большого объема информации и, как правило, конструктивно не объединенное с центральными блоками ЭВМ … Краткий толковый словарь по полиграфии

внешнее запоминающее устройство ВЗУ — 18 внешнее запоминающее устройство ВЗУ: Запоминающее устройство, подключаемое к центральной части вычислительной системы и предназначенное для хранения большого объема данных (ГОСТ 25492) Источник … Словарь-справочник терминов нормативно-технической документации

Кассетное запоминающее устройство — внешнее запоминающее устройство, в котором носителем информации является магнитная лента, заключенная в компактную кассету (существует также устройство, позволяющее производить запись на видеокассетах). см. также стример … Краткий толковый словарь по полиграфии

Используется для подключения устройств внешней памяти

Код ОГЭ: 1.4.1. Основные компоненты компьютера и их функции.

Компьютер — это электронное устройство для программной обработки информации.

Архитектура компьютера описывает его организацию и принципы функционирования его структурных элементов. Она включает в себя основные устройства компьютера и структуру связей между ними. Состав ПК еще называют конфигурацией.

Базовая конфигурация — минимальный состав компьютера, достаточный для начала работы с компьютером. В базовую конфигурацию обычно входят системный блок, монитор (дисплей) и клавиатура.

Системный (базовый) блок — это основной узел компьютерной системы; он содержит наиболее важные компоненты, осуществляющие обработку данных. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, — внешними. Внешние дополнительные устройства, предназначенные для ввода, вывода, обмена и длительного хранения данных, называют периферийными.

Основные компоненты компьютера

Монитор (дисплей) компьютера предназначен для отображения информации, передаваемой в виде сигналов от видеоконтроллера (видеокарты).

Клавиатура — клавишное устройство, предназначенное для управления работой компьютера и ввода в него информации в виде алфавитно-цифровых символьных данных.

Системный блок содержит материнскую плату, накопители на магнитных и лазерных дисках, блок питания с вентилятором. В системном блоке также могут быть установлены звуковая карта, видеокарта и др.

Материнская (системная) плата — это сложная многослойная печатная плата, на которой располагаются все необходимые компоненты для работы компьютера. Она обеспечивает обмен информацией между устройствами с помощью различных шин. На ней расположены разъемы (слоты) для подключения разных устройств: процессора, модулей памяти, адаптеров и контроллеров, соединенных системной шиной. Материнская плата осуществляет основные функции по объединению этих компонентов компьютера в согласованно работающее устройство.

Процессор (центральный процессор, ЦП) выполняет все действия по обработке информации и управляет работой компьютера. Производительность процессора зависит от его частоты и разрядности. Тактовая частота — количество операций, которые процессор производит за секунду. Она измеряется в мегагерцах (МГц) и гигагерцах (ГГц): 1 МГц означает выполнение 10 6 (миллион) операций за секунду, 1 ГГц — 10 9 (миллиард) операций за секунду. Разрядность — длина двоичного кода, который процессор может обработать или передать целиком одновременно. Современные ПК обычно оснащены 32– или 64–разрядными процессорами; существуют процессоры с разрядностью 128 бит. Современные процессоры — многоядерные, они содержат несколько (до 32) процессорных ядер в одном корпусе. Однако частота процессора намного важнее количества ядер. Так что одноядерный процессор с 3,6 ГГц лучше 4 ядерного процессора с 1,5 ГГц.

Основная память компьютера состоит из оперативной памяти (ОП, ОЗУ, оперативного запоминающего устройства) и постоянной памяти (ПП, ПЗУ, постоянного запоминающего устройства). Оперативная память — это набор микросхем, предназначенных для временного хранения данных, когда компьютер включен (после его выключения содержимое ОЗУ теряется). В ней сохраняются команды и промежуточные результаты, с которыми компьютер работает в данный момент. Постоянная память — это микросхема, предназначенная для длительного хранения данных, в том числе когда компьютер выключен. Она сохраняет постоянную информацию, которая записывается лишь один раз в заводских условиях и не может быть изменена пользователем. Самой важной характеристикой памяти является ее объем. Современным программам, например, требуется оперативная память объемом 128, 256 Мбайт и больше.

Обмен данными между отдельными элементами компьютера осуществляется через системную шину (магистраль). Шина — это кабель, состоящий из множества проводников. Обычно шина управляется специальной программой — драйвером.

Внешние устройства (клавиатура, монитор, дисководы, мышь и др.) подсоединяются к системной шине через адаптеры и контроллеры, которые обеспечивают функционирование этих устройств.

Устройства внешней памяти называются накопителями. Они предназначены для длительного сохранения информации. К ним относятся накопители на жестких, гибких и оптических дисках, флеш–память и др. Накопитель на жестких магнитных дисках (НЖМД, HDD — Hard Disk Drive, он же «винчестер») — основное устройство для долговременного хранения больших объемов данных и программ практически всех современных компьютеров. Одна из основных характеристик жесткого диска — емкость (количество данных, которые могут храниться накопителем; для современных устройств достигает нескольких терабайт). Гибкие магнитные диски были вытеснены компакт–дисками (оптическими дисками) и DVD, а затем — флеш-памятью (твердотельными носителями данных), которые имеют значительно большую емкость и надежность. В настоящее время существуют не только внутренние, но и внешние дисководы, имеющие удобное подключение к настольному ПК, ноутбуку, нетбуку.

Читайте так же:
Замена памяти ipad 2

Звуковая карта (звуковая плата) — это плата, которая позволяет работать на компьютере со звуком.

Видеокарта (графическая плата, видеоадаптер) — устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора.

Периферийные устройства

Периферийные устройства — устройства для ввода или вывода информации: принтеры, клавиатуры, мыши, сканеры и т. д. Подсоединение их к компьютеру производится через специальные разъемы — порты ввода/вывода. По способу передачи информации различают последовательные (информация передается последовательно) и параллельные (несколько битов информации передается одновременно) порты. В настоящее время они вытесняются шиной USB и беспроводными технологиями передачи информации.

Устройства ввода информации

Клавиатура. Сегодня существует огромное количество различных клавиатур: мультимедийные и веб–клавиатуры, эргономичные и игровые, беспроводные и гибкие, виртуальные лазерные и др. По методу подключения к системному блоку различают проводные (все чаще подключаемые с помощью USB) и беспроводные клавиатуры.

Мышь — устройство управления манипуляторного типа. По сути, это датчик координат, определяющих положение указателя на экране. Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта (указателя мыши) на экране монитора. Комбинация монитора и мыши обеспечивает наиболее современный тип интерфейса пользователя — графический. С помощью мыши пользователь изменяет свойства графических объектов и приводит в действие элементы управления компьютером.

Существуют мыши мало распространенного механического (шарикового) типа и современные — оптического типа, а также беспроводные мыши. В шариковой мыши ее движение передается в компьютер благодаря встроенному металлическому шарику, покрытому резиной, который вращается при перемещении мыши. В оптической — датчик улавливает свет, излучаемый встроенным диодом и отражаемый от поверхности стола. В лазерных мышах вместо диода установлен лазер, благодаря чему свет почти не рассеивается и достигается большая точность. Беспроводные мыши используют радиосвязь или инфракрасный порт.

Трекбол — встроенный в клавиатуру или мышь шарик, вращение которого вызывает перемещение курсора (по сути, это «перевернутая» шариковая мышь).

Сенсорная панель (тачпад) — сенсорная пластина, реагирующая на движение пальца пользователя по поверхности. Удар пальцем по поверхности тачпада воспринимается как нажатие кнопки.

Трекпойнт — специальная гибкая клавиша на клавиатуре, прогиб которой в нужном направлении перемещает курсор на экране дисплея.

Графический планшет — используется для рисования, а также для ввода рукописного текста с помощью специальной ручки.

Джойстик — рукоять с кнопкой. При вращении рукояти перемещается курсор на экране.

Сканер — устройство для переноса печатного текста и графических изображений (схем, рисунков, графиков, фотографий и др.) с бумаги в компьютер. Считывающая головка сканера равномерно движется над изображением, а специальное устройство преобразует его в цифровые коды.

Цифровая фотокамера — устройство для ввода фотоснимков в память компьютера.

Звуковая карта и микрофон — устройство для ввода звуковой информации.

Устройства вывода информации

Монитор. Основным компонентом мониторов обычно является матрица жидкокристаллических (ЖК) элементов, реже — электронно-лучевая трубка (ЭЛТ). Перспективными моделями считаются плазменные, проекционные и OLED–мониторы (в основе которых — органические светоизлучающие диоды).

Монитор подключается к компьютеру через устройство сопряжения — видеоадаптер. Основные параметры мониторов:

  • размер экрана — длина его диагонали; измеряется в дюймах* (например, 15″, 17″, 19″, 21″, 22″ и т. д.);
  • разрешение (разрешающая способность) — число пикселей** по вертикали и горизонтали. Чем больше разрешение, тем выше качество изображения. Для размера экрана 17″ ЖК–монитора оптимальным считается разрешение 1280 х 1024 пикселей;
  • время отклика пикселей, или инерционность — измеряется в миллисекундах (лучшие мониторы имеют значение этого параметра около 2 мс);
  • угол обзора — параметр, показывающий, на какой угол может отклониться взгляд человека без потери им видимости изображения на мониторе. Принтер — устройство вывода информации на бумагу. Существует множество видов принтеров; чаще всего используют два вида:
  • струйные — изображение формируется из капель чернил (тонера), которые выбрасывает печатающая головка принтера;
  • лазерные — изображение создается лазерным лучом на светочувствительном барабане внутри принтера. Там, где луч подсвечивает поверхность барабана, возникает электрический заряд, который притягивает сухие частицы краски–тонера. Когда барабан касается бумаги, тонер переводится на нее, затем нагревается, плавится и фиксируется на бумаге.
Читайте так же:
Микрофон для компьютера обзор

Плоттер (графопостроитель) — устройство печати сложных графических изображений — чертежей, схем, графиков, карт, диаграмм;

Акустические колонки и наушники — устройство для прослушивания звука.

Конспект урока по информатике «Основные компоненты компьютера и их функции».

Портативность и долговечность

Если вы ищете хранилище исключительно для домашнего использования, можно организовать на его основе NAS. По сути это то же облако, но полностью личное. NAS-система работает как автономное проводное устройство в локальной сети, объединяет несколько накопителей и режимов хранения. Производством дисков для NAS занимаются Promise Technology, QNAP, Synology и некоторые другие компании.

NAS постоянно будет на связи, однако вы не сможете положить его в сумку, чтоб взять на работу или в поездку. Если портативность важна, этот вариант отпадает.

Есть много компактных и легких внешних накопителей, например, Samsung T5. При небольшом размере он обладает приличной емкостью. Если сравнивать SSD и HDD, то первые обладают меньшими габаритами.

Еще одна причина сделать выбор в пользу твердотельника – долговечность. Производители HDD защищают свои изделия корпусами из надежных материалов, однако наличие подвижных частей внутри уже само по себе является слабым местом. В SSD подвижной механики нет, поэтому несильный удар или падение со стола вряд ли как-то скажется на работоспособности этого диска.

Таблица характеристик оперативной памяти

Оперативная память одного вида от различных производителей обладает схожими рабочими характеристиками.

Именно поэтому корректно осуществлять сравнение, беря во внимание лишь тип:

DDR
DDR2
DDR3
Частотный диапазон
100-400
400-800
800-1600
Рабочее напряжение
2.5v +/- 0.1V
1.8V +/- 0.1V
1.5V +/- 0.075V
Количество блоков
4
4
8
Termination
ограничено
ограничено
все DQ сигналы
Топология
TSOP
TSOP or Fly-by
Fly-by
Способ управления

OCD
Автоматическая калибровка с ZQ
Наличие температурного датчика
Нет
Нет
Да

Motorola 6800

Процессор Intel 8080 никогда не использует четвертый и пятый такты машинных циклов для доступа к внешней памяти. Кроме того, каж­дый командный цикл начинается с машинного цикла М1 — выборки команды. В такте декодирования принятой процессором команды этого машинного цикла системные шины не используются. На это время системные шины можно отдать для передачи одного слова по каналу ПДП. Применение рассмотренного способа организации обмена не снижает производительности процессоров, однако:

● требует дополнительных аппаратных затрат и позволяет реализовать только случайные, нерегулярные передачи;

● скорость обмена будет не быстрой, темп обмена нерегулярен, так как дли­тельности циклов различных команд различны, и, кроме того, прямой доступ может все–таки замедлить выполнение программы, если цикл ПДП не превы­шает интервал, соответствующий такту процессора.

Более распространенным является вариант способа с «захватом цикла», при котором центральный процессор принудительно отключается от системных шин адреса и данных. Его реализация связана с введением двух линий для передачи сигналов запроса на захват шин (ЗЗхв) и подтверждения захвата (ПЗхв). Сигнал ЗЗхв формируется контроллером ПДП.

После получения сигнала ЗЗхв процессор:

● приостанавливает выполнение очередной команды, не дожидаясь ее завер­шения;

● выдает в системный интерфейс сигнал подтверждения захвата ПЗхв;

● отключается от шин адреса и данных, переводя в высокоомное состояние шинные формирователи.

После получения сигнала ПЗхв контроллер ПДП использует шины системного интерфейса для обмена байтом или словом между ВУ и памятью. Затем снимает сигнал запроса ЗЗхв и возвращает управление шинами центральному процессо­ру. Подготовив очередной байт или слово данных, контроллер ПДП вновь посыла­ет сигнал ЗЗхв процессору и т. д.

Как уже отмечалось, режим ПДП не требует сохранения состояния регистров процессора в стеке. Поэтому передача данных с «захватом цикла» происходит с большей скоростью, чем при обмене в режиме прерываний.

Способ ПДП с блокировкой процессора отличается от способа с «захватом цикла» тем, что управление шинами контроллеру передается на время обмена блоком данных, а не на время обмена байтом или словом. Его следует приме­нять, когда время обмена байтом сопоставимо с циклом процессора. В этом слу­чае между двумя операциями обмена процессор не успевает выполнить ни одной команды. При непрерывной передаче массива данных скорость обмена огра­ничивается длительностью циклов устройства памяти, быстродействием самого контроллера и скоростью выдачи/приема данных внешним устройством.

Читайте так же:
Источник бесперебойного питания apc back ups 650

Обмен данными по каналу ПДП требует предварительной подготовки контрол­лера. Она заключается в том, что программа загрузки устанавливает необходи­мые параметры для передачи:

● количество байтов (слов) данных, которые должны быть переданы;

● начальный адрес передаваемых данных (адрес первого байта или слова);

● направление передачи (запись/чтение).

Для занесения этих параметров в контроллере предусмотрены регистр адреса и счетчик байтов (слов).

Реализация прямого доступа к памяти. В качестве примера рассмотрим особенности схемной реализации и работы канала ПДП при передаче из внешне­го устройства в память блоков данных в режиме с «захватом цикла». Схема такого устройства ПДП приведена на рис. 3.10.2. В устройстве можно выделить три вида аппаратных средств.

рис. 3.10.2

Средства адресации и контроля переданных слов:

● суммирующий 16–разрядный счетчик текущего адреса, разделенный на две половины для младших (МР) и старших (СР) разрядов. Каждая половина имеет свой адрес, по которому происходит начальная загрузка счетчика. На выходе счетчиков включены управляемые буферы для передачи адреса в память;

● вычитающий 8–разрядный счетчик слов, контролирующий число оставшихся для передачи слов. На его выходе включен логический элемент ИЛИ–НЕ, формирующий для внешнего устройства Флаг = 1 по завершении передачи блока данных, когда на вход ИЛИ–НЕ (10) поступает код 000000002;

DС с тремя логическими элементами ИЛИ–НЕ (1, 2, 3), включен­ными на его выходе. Дешифратор с логическими элементами инициирует загрузку счетчиков адреса и слов.

Средство хранения данных, в качестве которого используется восьми­разрядный буферный регистр. К выходу регистра подключен управляемый буфер, обеспечивающий побайтное считывание данных из регистра и запись их в память.

Средства управления

К ним относятся:

● двухразрядный двоичный счетчик, управляющий записью данных в память и состоянием счетчиков адреса и слов;

триггер запроса ТЗ, предназначенный для формирования сигнала запроса на ПДП (ЗПДП) для центрального процессора по стробу, поступающему от внеш­него устройства, и хранения сигнала ЗПДП до конца передачи блока данных;

● логические элементы 4–9, обеспечивающие требуемый алгоритм управления. Назначение используемых сигналов приведено в табл. 3.10.1.

табл. 3.10.1

Принцип работы устройства ПДП. Программа, выполняемая центральным процессором, задает необходимые параметры для передачи данных:

● 16–разрядный адрес ячейки памяти для хранения первого слова путем последо­вательной загрузки в счетчик адреса младшего (МБ) и старшего (СБ) байтов;

● количество передаваемых слов путем загрузки числа л в счетчик слов. Из внешнего устройства ВУ поступают байт данных и строб, по которому байт данных заносится в буферный регистр. Строб также устанавливает триггер за­проса ТЗ в единичное состояние. С выхода триггера ТЗ снимается сигнал запро­са ПДП (ЗПДП). Получив сигнал ЗПДП, процессор приостанавливает выполнение программы, отключается от шин, предоставляя их устройству ПДП, и посылает сигнал разрешения ПДП (РПДП).

Сигнал РПДП выполняет следующие функции:

● открывает буфер для передачи содержимого буферного регистра на ШД;

● открывает буферы для передачи содержимого счетчика адреса на 16–разряд­ную шину адреса ША;

● запускает двухразрядный счетчик подачей сигнала на вход «Сброс» через ин­вертор (5);

● открывает элемент И (4) для поступления тактовых импульсов на вход «Счет» счетчика.

При втором тактовом импульсе ТИ на выходе счетчика появляются сигналы

Q = 0. При комбинации

Q =10 элемент 8 закрыт, элементы 7 и 9 — от­крыты. Сигнал «Запись в память» ЗпП, проходя через элемент И (9), инициирует запись в память байта данных из буферного регистра по адресу, выставленному на ША счетчиком адреса.

Третий ТИ переводит двухразрядный счетчик в состояние Q1

Q = 11, благодаря чему открывается элемент И (8). На его выходе формируется сигнал «Счет», который:

● увеличивает на 1 содержимое счетчика адреса;

● уменьшает на 1 содержимое счетчика слов;

● производит сброс триггера запроса ТЗ, снимая сигнал запроса ПДП.

В результате этих операций процессор возобновляет работу, а счетчики под­готовлены к передаче следующего слова (байта данных). Процессор продолжает работать до тех пор, пока не будет загружен буферный регистр новым словом и не будет послан новый запрос на ПДП. Далее процесс передачи слов по каналу ПДП повторяется. После того, как содержимое счетчика слов станет равным нулю (000000002), включенный на его выходе элемент ИЛИ–НЕ (10) установит флаг в единичное состояние, свидетельствующее об окончании передачи блока данных.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector